554 research outputs found

    Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects

    Get PDF
    7 pags.; 7 figs.; 1 tab.Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of 4 He and 3 He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He−graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the 4 He/3 He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20−30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that 4 He tends to diffuse faster than 3 He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials. © 2015 American Chemical SocietyThe work has been funded by Spanish MINECO grant FIS2013-48275-C2-1-P. Allocation of computing time by CESGA (Spain) and support by the COST-CMTS Action CM1405 “Molecules in Motion (MOLIM)” are also acknowledged.Peer reviewe

    Graphene Multi-Protonation: a Cooperative Mechanism for Proton Permeation

    Full text link
    The interaction between protons and graphene is attracting a large interest due to recent experiments showing that these charged species permeate through the 2D material following a low barrier (~ 0.8 eV) activated process. A possible explanation involves the flipping of a chemisorbed proton (rotation of the C-H+^+ bond from one to the other side of the carbon layer) and previous studies have found so far that the energy barriers (around 3.5 eV) are too high to explain the experimental findings. Contrarily to the previously adopted model assuming an isolated proton, in this work we consider protonated graphene at high local coverage and explore the role played by nearby chemisorbed protons in the permeation process. By means of density functional theory calculations exploiting large molecular prototypes for graphene it is found that, when various protons are adsorbed on the same carbon hexagonal ring, the permeation barrier can be reduced down to 1.0 eV. The related mechanism is described in detail and could shed a new light on the interpretation of the experimental observations for proton permeation through graphene.Comment: 16 pages, 5 figure

    Graphdiyne based membranes: exceptional performances for helium separation applications

    Get PDF
    Graphdiyne is a novel two-dimensional material deriving from graphene that has been recently synthesized and featuring uniformly distributed sub-nanometer pores. We report accurate calculations showing that graphdiyne pores permit an almost unimpeded helium transport which can be used for its chemical and isotopic separation. Exceptionally high He/CH_4 selectivities are found which largely exceed the performance of the best membranes used to date for extraction from natural gas. Moreover, by exploiting slight differences in the tunneling probabilities of ^3He and ^4He, we also find promising results for the separation of the Fermionic isotope at low temperature

    Effect of the anisotropy on the glory structure of molecule-molecule scattering cross sections

    Get PDF
    Total (elastic + rotationally inelastic) integral cross sections are computed for O2(3Σg)_2(^3\Sigma_g^-)-O2(3Σg)_2(^3\Sigma_g^-) using a recent ab initio potential energy surface. The sampled velocity range allows us a thorough comparison of the glory interference pattern observed in molecular beam experiments. The computed cross sections are about 10% smaller than the measured ones, however, a remarkable agreement in the velocity positions of the glory extrema is achieved. By comparing with models where the anisotropy of the interaction is reduced or removed, it is found that the glory pattern is very sensitive to the anisotropy, especially the positions of the glory extrema.Comment: 13 pages, 3 figure

    Three-Dimensional Wave-Packet Calculations of the Transmission of He Isotopes through Graphynes Membranes

    Get PDF
    Mendoza, Argentina. 9th-13st of May 2016 ; http://photodynamics9.wixsite.com/phd9N

    Helium Isotopes Quantum Sieving Through Graphtriyne Membranes

    Full text link
    We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger than graphdiyne, the most common member of the gamma - graphyne family, it could be expected that the appearance of quantum effects were more limited. We find, however, a strong quantum behavior that can be attributed to the presence of selective adsorption resonances, with a pronounced effect in the low temperature regime. This effect leads to the appearance of some selectivity at very low temperatures and the possibility for the heavier isotope to cross the membrane more efficiently than the lighter, contrarily to what happened with graphdiyne membranes, where the sieving at low energy is predominantly ruled by quantum tunneling. The use of more approximate methods could be not advisable in these situations and prototypical transition state theory (TST) treatments might lead to large errors

    A Comparison between Non-Localized Post-Activation Performance Enhancements Following Resistance Exercise for the Upper and the Lower Body

    Get PDF
    The aim of the present investigation was to compare the acute non-localized post-activation performance enhancement (PAPE) of an exercise protocol involving either the upper or the lower body muscles. Twenty-four resistance trained men participated in the present study and were randomly assigned to an upper body (UB) or to a lower body (LB) group. Both groups tested for upper and lower body power (bench press throw (BPT) and countermovement jump power (CMJP) tests). Participants in the UB group were tested pre and post a high-intensity (HI) and a high-power (POW) bench press protocol while participants in the LB group performed a HI squat and a jump session (POW). A significant group × time interaction was found for CMJP in HI (p = 0.012). Post hoc tests revealed that CMJP was elevated in UB group only (+1.6%; p = 0.025). No other significant interactions were detected. Results of this study indicate that a non-localized PAPE on the lower body may be induced by a HI bench press protocol while a HI squat protocol may not increase upper body power. In particular, the squat protocol performed in the present study (5 sets of 1 rep) may be too demanding to produce a non-localized PAPE

    Transmission of Helium through Graphynes Pores: First Principles Calculations and Quantum Mechanical Simulations

    Get PDF
    AMOC 2015, Anharmonicity in médium-sized molecules and cluster, CSIC, Madrid (Spain), 26-30 April 2015; http://tct1.iem.csic.es/AMOC2015.htmPeer Reviewe

    Acute effects of a high volume vs. High intensity bench press protocol on electromechanical delay and muscle morphology in recreationally trained women

    Get PDF
    The purpose of the present investigation was to compare the acute responses on muscle architecture, electromechanical delay (EMD) and performance following a high volume (HV: 5 sets of 10 reps at 70% of 1 repetition maximum (1RM)) and a high intensity (HI: 5 sets of 3 reps at 90% of 1RM) bench press protocol in women. Eleven recreationally trained women (age = 23.3 ± 1.8 y; body weight = 59.7 ± 6.0 kg; height = 164.0 ± 6.3 cm) performed each protocol in a counterbalanced randomized order. Muscle thickness of pectoral (PEC MT) and triceps muscles (TR MT) were collected prior to and 15 min post each trial. In addition, EMD of pectoral (PEC EMD) and triceps (TR EMD) muscles were calculated during isometric bench press maximum force tests performed at the same timepoints (IBPF). Significantly greater increases in PEC MT (p < 0.001) and TR MT (p < 0.001) were detected following HV compared to HI. PEC EMD showed a significantly greater increase following HV compared to HI (p = 0.039). Results of the present study indicate that the HV bench press protocol results in greater acute morphological and neuromuscular changes compared to a HI protocol in women. Evaluations of muscle morphology and electromechanical delay appear more sensitive to fatigue than maximum isometric force assessments

    Visual and semiautomated evaluation of epileptogenicity in focal cortical dysplasias - An intracranial EEG study

    Get PDF
    INTRODUCTION: The aim of the study was the evaluation of the added value of depth to subdural electrodes in delineating epileptogenicity of focal cortical dysplasias (FCDs) and to test the Epileptogenicity Index (EI) in this setting. MATERIAL AND METHODS: Fifteen patients with FCD underwent iEEG with subdural and depth electrodes. Visual/EI analysis was performed in up to three habitual seizures per patient. RESULTS: Visual analysis: Grid onset seizures (n=10) started in electrodes overlying the lesion in 7 and remote from it in 3 cases. Depth onset seizures (n=7) affected only intralesional contacts in 4, intra- and extralesional in 2, and exclusively extralesional in 1 patient. Seizures started in depth and grid contacts simultaneously in 2 cases. EI analysis: The EI completely confirmed visual localization of seizure onset in 8 cases and depicted ictal onset-time accurately in 13. Beta/gamma ictal patterns were most reliably captured. Impact on surgical decision: Resection outline differed from MRI lesion in 7 patients based on grid and in three based on depth electrode information. DISCUSSION: In FCD, seizures can be generated within gyral/deep tissue appearing normal on imaging. CONCLUSION: Investigating FCD with subdural and depth electrodes is efficient to outline the seizure onset zone. The EI is a helpful additional tool to quantify epileptogenicity. Specific ictal patterns are prerequisite for reliable results
    corecore